

IMPACT MIRACLE end mill with multiple internal through coolant holes

VFMHVCH VFMHVRBCH VFSFPRCH

VF6MHVCH F6MHVRBCH VF65VRCH 2011.4 Update

VF8MHVCH

F8MHVRBCH

New end mills with multiple internal holes for efficient flow of coolant.

Effective for machining titanium and other super alloys used in aerospace components.

IMPACT MIRACLE END MILLS

IMPACT MIRACLE end mill with multiple internal through coolant holes

VFMHVCH VFMHVRBCH VFSFPRCH

VF6MHVCH VF6MHVRBCH

VF8MHVCH VF8MHVRBCH

Features

Multiple internal coolant holes

The multiple internal through coolant system is used for improved welding resistance. The spiral arrangement of the coolant holes enables a wide range of machining applications. Especially suitable for machining difficult-to-cut materials, offering stable machining.

Unique flute geometry

Flute geometry with excellent chip disposal properties for high efficiency machining.

Carbide substrate with excellent fracture resistance.

IMPACT MIRACLE coating

Excellent heat resistance gives long tool life even when machining difficult-to-cut materials.

VFMHVCH


End mill, Medium cut length, 4 flute, Irregular helix flutes, with multiple internal through coolant

ø16. ø20

VFMHVRBCH

4 different sizes available.

Corner radius end mill, Medium cut length, 4 flute, Irregular helix flutes with multiple internal through coolant

VF6MHVCH

End mill, Medium cut length, 6 flute. Irregular helix flutes with multiple internal through coolant

VF8MHVCH

with multiple internal through coolant

ø10, ø12, ø16, ø20

2 different sizes available.

4 different sizes available.

VF6MHVRBCH

8 different sizes available.

4 different sizes available

Corner radius end mill Medium cut length, 6 flute. Irregular helix flutes with multiple internal through coolant

ø10(2 sizes), ø12(2 sizes) ø16(2 sizes), ø20(2 sizes)

VF8MHVRBCH 2 different sizes available.

Corner radius end mill

Medium cut length, 8 flute, Irregular helix flutes,

with multiple internal through coolant (ø16(2 sizes), ø20(2 sizes))

End mill, Medium cut length,

8 flute, Irregular helix flutes

ø16, ø20

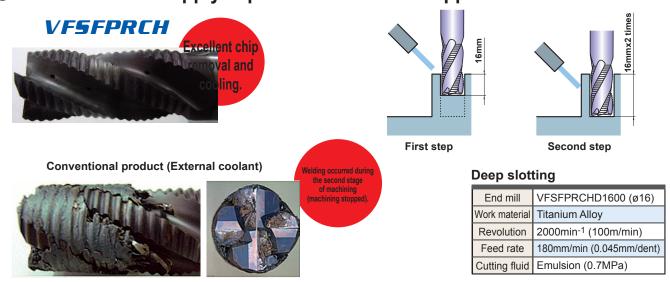
2 different sizes available.

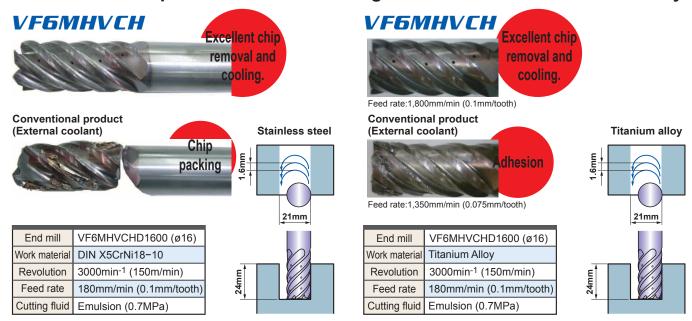
VF65VRCH

2 different sizes available

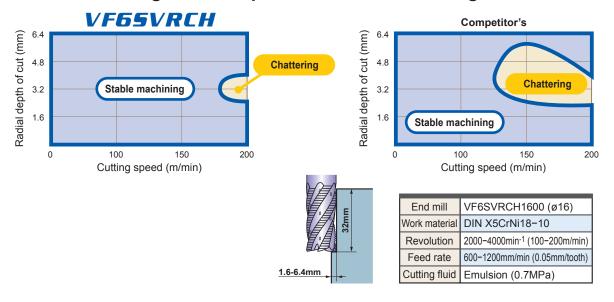
Roughing end mill, Short cut length, 4 flute, with multiple internal through coolant

VFSFPRCH


Roughing end mill, Short cut length, 6 flute, Irregular helix flutes. with multiple internal through coolant ø16, ø20


*Please consult Mitsubishi Materials for any geometry that is not in this literature (e.g. different diameters and lengths can be made to order).

Cutting Performance


Stable coolant supply is possible for various applications!

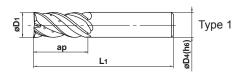
Tool life comparison when machining stainless steel and titanium alloy.

Stable cutting area comparision when machining stainless steel.

IMPACT MIRACLE END MILLS

VFMHVCH

End mill, Medium cut length, 4 flute, Irregular helix flutes, with multiple internal through coolant


0 — -0.03

D4=16 0 -- 0.011 D4=20 0 -- 0.013

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel (<45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (≥55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
				0	0		

 Vibration control end mill with multiple internal through coolant holes ensures stable machining on difficult-to-cut materials and applications requiring long overhangs.

Unit: mm

Order Number	Dia. D1	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VFMHVCHD1600	16	35	90	16	4	•	1
D2000	20	45	110	20	4	•	1

: Inventory maintained.

Recommended Cutting Conditions

Shoulder milling

Work material	Austenitic st X5CrN XSCrNiM Titaniu	i18-10 o17-12-2	Heat resistant alloys Inconel, etc.					
Dia. (mm)	Revolution Feed rate (min ⁻¹) (mm/min)		Revolution (min ⁻¹)	Feed rate (mm/min)				
16	2000 560		800	110				
20	1600	510	600	100				
Depth of cut		≤0.1D 0.5D — 1.5D		- ≤0.05D 0.5D — 1.5D				
	D:Dia.							

Slotting

Work material	Austenitic stainless steel X5CrNi18-10 XSCrNiMo17-12-2 Titanium alloy					
Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)				
16	1400	170				
20	1100	130				
Depth of cut	0.5D – 1.5					
		D·Dia				

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately, or set a lower depth of cut.
- 3) For shoulder milling, climb cutting is recommended.

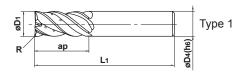
VFVHVRBCH Comer radius end mill, Medium cut lenoth, 4 flute, Irregular helix flutes, with multiple internal through coolant

D4=16 0 -- 0.011 D4=20 0 -- 0.013

Carbon Steel, Alloy Steel, Cast Iron (<30 HRC)

Tool Steel, Pre-Hardened Steel (≤55 HRC)

Tool Steel, Pre-Hardened Steel (≤55 HRC)


Titanium Alloy

Copper Alloy

Aluminium Alloy

©

 Vibration control corner radius end mill with multiple internal through coolant holes ensures stable machining on difficult-to-cut materials and applications requiring long overhangs.

Unit: mm

Order Number	Dia. D1	Corner Radius R	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VFMHVRBCHD1600R100	16	1	35	90	16	4	•	1
D1600R300	18	3	35	90	16	4	•	1
D2000R100	20	1	45	110	20	4	•	1
D2000R300	20	3	45	110	20	4	•	1

: Inventory maintained.

Recommended Cutting Conditions

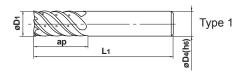
Shoulder milling

Austenitic stainless steel Work X5CrNi18-10 Heat resistant alloys XSCrNiMo17-12-2 material Inconel, etc. Titanium alloy Dia. Revolution Feed rate Revolution Feed rate (mm) (min-1) (mm/min) (min^{-1}) (mm/min) 16 2000 560 800 110 20 1600 510 600 100 <0.1D ≤0.05D Depth of 0.5D — 1.5D 0.5D — 1.5D cut D:Dia

Slotting

Work material	Austenitic stainless steel X5CrNi18-10 XSCrNiMo17-12-2 Titanium alloy				
Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)			
16	1400 170				
20	1100	130			
Depth of cut	D	0.5D — 1.5D			
		D:Dia.			

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately, or set a lower depth of cut.
- 3) For shoulder milling, climb cutting is recommended.


End mill, Medium cut length, 6 flute, Irregular helix flutes with multiple internal through coolant holes

0 -- -0.03

0 - -0.011D4=16 0 - -0.013

Carbon Steel, Alloy Steel, Cast Iron (<30HRC) Tool Steel, Pre-Hardened Steel (<45HRC) Hardened Steel (≤55HRC) Hardened Steel (≥55HRC) Austenitic Stainless Steel Titanium Alloy Heat Resistant Alloy Aluminium Alloy Copper Alloy 0

Vibration control end mill with multiple internal through coolant holes ensures stable machining on difficult-to-cut materials and applications requiring long overhangs.

Unit: mm

	Order Number	Dia. D1	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
NEW	VF6MHVCHD1000	16	22	70	10	6	•	1
NEW	D1200	12	26	75	12	6	•	1
	D1600	16	32	90	16	6	•	1
	D2000	20	38	100	20	6	•	1

: Inventory maintained.

Recommended Cutting Conditions

Shoulder milling

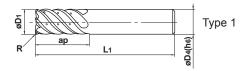
Trochoid Milling

Work material	Austenitic st X5CrN XSCrNiN Titaniu	Ni1810	Heat resis	stant alloy el etc.	Work material	Austenitic st X5CrN XSCrNih Titaniu	li1810 /lo17122	
Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)	Revolution (min ⁻¹)	Feed rate (mm/min)	Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)	
10	4800	2000	1300	260	10	4800	1400	
12	4000	2000	1100	230	12	4000	1200	
16	3000	1600	800	180	16	3000	1100	
20	2400	1400	640	150	20	2400	900	
Depth of cut		- ≤0.1D 0.5D - 1.5D		_ ≤0.05D 0.5D — 1.5D	Depth of cut	1.5D ≤ ≤0.1D		
D:Dia.							0.5D — 1.5D	

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately.
- 3) Climb cutting is recommended.

VF6/VHVRBCH Corner radius end mill, Medium cut lenoth, 6 flute, Irregular helix flutes, with multiple internal through coplant

R ±0.015



D4=16 0 -- 0.011 D4=20 0 -- 0.013

Carbon Steel, Alloy Steel, Cast Iron (<30 HRC) Tool Steel, Pre-Hardened Steel (≤55 HRC) Hardened Steel (≤55 HRC) Stainless Steel Number Steel (≤55 HRC) Stainless Steel Number Steel Number Steel Number Steel (≤55 HRC) Number Steel Number S

 Vibration control corner radius end mill with multiple internal through coolant holes ensures stable machining on difficult-to-cut materials and applications requiring long overhangs.

Unit: mm

Order Number	Dia. D1	Corner Radius R	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VF6MHVRBCHD1000R050	10	0.5	22	70	10	6	•	1
D1000R100	10	1	22	70	10	6	•	1
D1200R050	12	0.5	26	75	12	6	•	1
D1200R100	12	1	26	75	12	6	•	1
D1600R100	16	1	32	90	16	6	•	1
D1600R300	16	3	32	90	16	6	•	1
D2000R100	20	1	38	100	20	6	•	1
D2000R300	20	3	38	100	20	6	•	1

: Inventory maintained.

Recommended Cutting Conditions

Shoulder milling

Trochoid Milling

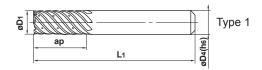
Work material	XSCrNiM	ainless steel i18-10 o17-12-2 m alloy	Heat resis	stant alloy el etc.	Work material	X5CrN XSCrNiM	ainless steel i18-10 o17-12-2 m alloy
Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)	Revolution (min ⁻¹)	Feed rate (mm/min)	Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)
10	4800	2000	1300	260	10	4800	1400
12	4000	2000	1100	230	12	4000	1200
16	3000	1600	800	180	16	3000	1100
20	2400	1400	640	150	20	2400	900
Depth of cut		- ≤0.1D 0.5D - 1.5D		_ ≤0.05D 0.5D — 1.5D	Depth of cut		
D:Dia.							0.5D — 1.5D

1) If the depth of cut is shallow, the revolution and feed rate can be increased.

2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately.

3) Climb cutting is recommended.

VF8MHVCH NEW



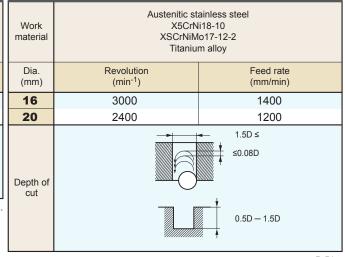
0 — -0.03

D4=16 0 -- 0.011 D4=20 0 -- 0.013

Vibration control 8 flute end mill with multiple internal through coolant hole ensures efficient side finishing of difficult-to-cut materials such as stainless steels, titanium and inconel alloys.

Unit: mm

Order Number	Dia. D1	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VF8MHVCHD1600	16	32	90	16	8	•	1
D2000	20	38	100	20	8	•	1

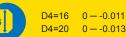

: Inventory maintained.

Recommended Cutting Conditions

Shoulder milling

Trochoid Milling

Work material	Austenitic st X5CrN XSCrNiM Titaniu	li18-10 lo17-12-2	Heat resistant alloy Inconel etc.						
Dia. (mm)	Revolution Feed rate (min ⁻¹) Female (mm/min)		Revolution (min ⁻¹)	Feed rate (mm/min)					
16	3000 2100		800	240					
20	2400	1900	640	200					
Depth of cut		≤0.08D 0.5D — 1.5D		≤0.05D 0.5D — 1.5D					
	D:Dia.								



- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately.
- 3) Climb cutting is recommended.

VF8VIHVRBCH Comer radius end mill, Medium cut length, 8 flute, Irregular helix flutes, with multiple internal through coolant

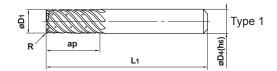
R ±0.015

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)

Tool Steel, Pre-Hardened Steel (≤55HRC)

Tool Steel, Pre-Hardened Steel (≤55HRC)

Tool Steel, Pre-Hardened Steel (≤55HRC)


Titanium Alloy

Reat Resistant Alloy

Copper Alloy

Aluminium Alloy

Vibration control 8 flute corner radius end mill with multiple internal through coolant hole ensures
efficient side finishing of difficult-to-cut materials such as stainless steels, titanium and inconel alloys.

Unit: mm

Order Number	Dia. D1	Corner Radius R	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute	Stock	Туре
VF8MHVRBCHD1600R100	16	1	32	90	16	8	•	1
D1600R300	16	3	32	90	16	8	•	1
D2000R100	20	1	38	100	20	8	•	1
D2000R300	20	3	38	100	20	8	•	1

: Inventory maintained.

Recommended Cutting Conditions

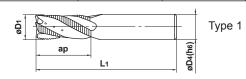
Shoulder milling

Austenitic stainless steel X5CrNi18-10 Heat resistant allov Work XSCrNiMo17-12-2 material Inconel etc. Titanium alloy Dia Revolution Feed rate Revolution Feed rate (min⁻¹) (min⁻¹) (mm) (mm/min) (mm/min) 3000 16 2100 800 240 2400 1900 200 20 640 ≤0.08D ≤0.05D Depth of 0.5D - 1.5D0.5D — 1.5D cut D:Dia

Trochoid Milling

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately.
- 3) Climb cutting is recommended.

VFSFPRCH


Roughing end mill, Short cut length, 4 flute, with multiple internal through coolant

0 — -0.011 0 - -0.013

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel (<45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (≥55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
				0			

Vibration control 8 flute corner radius end mill with multiple internal through coolant hole ensures efficient side finishing of difficult-to-cut materials such as stainless steels, titanium and inconel alloys.

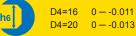
Unit: mm

Order Number	Dia. D1	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VFSFPRCHD1600	16	33	90	16	4	•	1
D2000	20	38	100	20	4	•	1

: Inventory maintained.

Recommended Cutting Conditions

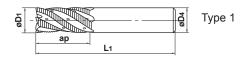
Shoulder milling


Work material	X5CrN XSCrNiN	ainless steel li18-10 lo17-12-2 m alloy	Heat resis Incone	, ,	
Dia. (mm)	Revolution Feed rate (min ⁻¹) (mm/min)		Revolution (min ⁻¹)	Feed rate (mm/min)	
16	1200	300	800	110	
20	1000 300		600	100	
Depth of cut		≤0.5D 0.5D − 1.5D		≤0.3D 0.5D — 1.5D	
D:Dia.					

Slotting

Work material	Austenitic stainless steel X5CrNi18-10 XSCrNiMo17-12-2 Titanium alloy				
Dia. (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)			
16	800	100			
20	600 80				
Depth of cut	D				
		D:Dia.			

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) If the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately, or set a lower depth of cut.
- 3) For shoulder milling, climb cutting is recommended.


VF65VRCH

Roughing end mill, Short cut length, 6 flute, Irregular helix flutes, with multiple internal through coolant

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel (<45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (≥55HRC)	Austenitic Stainless Steel	Titanium Alloy Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
				0	0		

 Roughing end mill with multiple internal through coolant holes suitable for difficult-to-cut materials.

Unit: mm

Order Number	Dia. D1	Length of Cut ap	Overall Length L1	Shank Dia. D4	No. of Flute N	Stock	Туре
VF6SVRCHD1600	16	33	90	16	6	•	1
D2000	20	38	100	20	6	•	1

•: Inventory maintained.

Recommended Cutting Conditions

Shoulder milling

Work material	Austenitic st X5CrN XSCrNiM Titaniui	i18-10 o17-12-2		stant alloy el etc.
Dia. (mm)	Revolution Feed rate (mm/min)		Revolution (min ⁻¹)	Feed rate (mm/min)
16	2400 1200		800	160
20	1900 1000		640	140
Depth of cut	≤0.3D 0.5D — 1.5D			- ≤0.2D 0.5D − 1.5D

- 1) If the depth of cut is shallow, the revolution and feed rate can be increased.
- 2) The irregular helix flute end mill has a large effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is very low, then vibration can occur. In this case, please reduce the revolution and feed rate proportionately.
- 3) Climb cutting is recommended.

IMPACT MIRACLE END MILLS

IMPACT MIRACLE end mill with multiple internal through coolant holes

MITSUBISHI AMITSUBISHI MATERIALS

MMC HARTMETALL GmbH

Comeniusstr. 2, 40670 Meerbusch Germany Tel. +49-2159-91890 Fax +49-2159-918966 e-mail admin@mmchg.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House, Galena Close, Amington Heights, Tamworth. B77 4AS, U.K. Tel. +44-1827-312312 Fax +44-1827-312314 e-mail sales@mitsubishicarbide.co.uk

MMC METAL FRANCE S.A.R.L.

6, rue Jacques Monod, 91400 Orsay, France Tel. +33-1-69-35-53-53 Fax +33-1-69-35-53-50 e-mail mmfsales@mmc-metal-france.fr

MITSUBISHI MATERIALS ESPAÑA. S.A.

Calle Emperador 2, 46136 Museros, Valencia, Spain Tel. +34-96-144-1711 Fax +34-96-144-3786 e-mail mme@mmevalencia.com

MMC ITALIA S.R.L

Viale delle Industrie 2, 20020 Arese (Mi) Italy Tel. +39-02-93-77-03-1 Fax +39-02-93-58-90-93 e-mail info@mmc-italia.it

MMC HARDMETAL POLAND SP. z o.o.

Al. Armii Krajowej 61, 40-541 Wroclaw, Poland Tel. +48-71-335-16-20 Fax +48-71-335-16-21 e-mail sales@mitsubishicarbide.com.pl

www.mitsubishicarbide.com

MMC HARDMETAL OOO LTD.

ul. Bolschaya Semenovskaya 11, bld. 5, 107023 Moscow, Russia Tel. +7-495-72558-85 Fax +7-495-98139-73 e-mail info@mmc-carbide.ru

